EconPapers    
Economics at your fingertips  
 

Top-down strategies based on adaptive fuzzy rule-based systems for daily time series forecasting

Ivette Luna and Rosangela Ballini

International Journal of Forecasting, 2011, vol. 27, issue 3, 708-724

Abstract: This paper presents a data-driven approach applied to the long term prediction of daily time series in the Neural Forecasting Competition. The proposal comprises the use of adaptive fuzzy rule-based systems in a top-down modeling framework. Therefore, daily samples are aggregated to build weekly time series, and consequently, model optimization is performed in a top-down framework, thus reducing the forecast horizon from 56 to 8 steps ahead. Two different disaggregation procedures are evaluated: the historical and daily top-down approaches. Data pre-processing and input selection are carried out prior to the model adjustment. The prediction results are validated using multiple time series, as well as rolling origin evaluations with model re-calibration, and the results are compared with those obtained using daily models, allowing us to analyze the effectiveness of the top-down approach for longer forecast horizons.

Keywords: Simulation; Rule-based; forecasting; Forecasting; competitions; Disaggregation; Fuzzy; inference; system; Adaptive; fuzzy; systems (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207010001457
Full text for ScienceDirect subscribers only

Related works:
Journal Article: Top-down strategies based on adaptive fuzzy rule-based systems for daily time series forecasting (2011) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:27:y::i:3:p:708-724

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:27:y::i:3:p:708-724