A heuristic method for parameter selection in LS-SVM: Application to time series prediction
Ginés Rubio,
Héctor Pomares,
Ignacio Rojas and
Luis Javier Herrera
International Journal of Forecasting, 2011, vol. 27, issue 3, 725-739
Abstract:
Least Squares Support Vector Machines (LS-SVM) are the state of the art in kernel methods for regression. These models have been successfully applied for time series modelling and prediction. A critical issue for the performance of these models is the choice of the kernel parameters and the hyperparameters which define the function to be minimized. In this paper a heuristic method for setting both the [sigma] parameter of the Gaussian kernel and the regularization hyperparameter based on information extracted from the time series to be modelled is presented and evaluated.
Keywords: Least; squares; support; vector; machines; Gaussian; kernel; parameters; Hyperparameters; optimization; Time; series; prediction (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207010000440
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:27:y::i:3:p:725-739
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().