An empirical analysis of neural network memory structures for basin water quality forecasting
David West and
Scott Dellana
International Journal of Forecasting, 2011, vol. 27, issue 3, 777-803
Abstract:
This research investigates the cumulative multi-period forecast accuracy of a diverse set of potential forecasting models for basin water quality management. The models are characterized by their short-term (memory by delay or memory by feedback) and long-term (linear or nonlinear) memory structures. The experiments are conducted as a series of forecast cycles, with a rolling origin of a constant fit size. The models are recalibrated with each cycle, and out-of-sample forecasts are generated for a five-period forecast horizon. The results confirm that the JENN and GMNN neural network models are generally more accurate than competitors for cumulative multi-period basin water quality prediction. For example, the JENN and GMNN models reduce the cumulative five-period forecast errors by as much as 50%, relative to exponential smoothing and ARIMA models. These findings are significant in view of the increasing social and economic consequences of basin water quality management, and have the potential for extention to other scientific, medical, and business applications where multi-period predictions of nonlinear time series are critical.
Keywords: Watershed; management; Short-term; memory; Jordan-Elman; neural; network; Gamma; memory; neural; network (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207010001421
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:27:y::i:3:p:777-803
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().