EconPapers    
Economics at your fingertips  
 

Combination of long term and short term forecasts, with application to tourism demand forecasting

Robert R. Andrawis, Amir F. Atiya and Hisham El-Shishiny

International Journal of Forecasting, 2011, vol. 27, issue 3, 870-886

Abstract: Forecast combination is a well-established and well-tested approach for improving the forecasting accuracy. One beneficial strategy is to use constituent forecasts that have diverse information. In this paper we consider the idea of diversity being accomplished by using different time aggregations. For example, we could create a yearly time series from a monthly time series and produce forecasts for both, then combine the forecasts. These forecasts would each be tracking the dynamics of different time scales, and would therefore add diverse types of information. A comparison of several forecast combination methods, performed in the context of this setup, shows that this is indeed a beneficial strategy and generally provides a forecasting performance that is better than the performances of the individual forecasts that are combined. As a case study, we consider the problem of forecasting monthly tourism numbers for inbound tourism to Egypt. Specifically, we consider 33 individual source countries, as well as the aggregate. The novel combination strategy also produces a generally improved forecasting accuracy.

Keywords: Time; series; forecasting; Tourism; forecasting; Tourism; demand; Forecasting; tourism; in; Egypt; Forecast; combination; Exponential; smoothing; Holt's; model; Bayesian; forecasting (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (47)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207010001147
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:27:y::i:3:p:870-886

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:27:y::i:3:p:870-886