Time series modeling of histogram-valued data: The daily histogram time series of S&P500 intradaily returns
Gloria Gonzalez-Rivera and
Javier Arroyo
International Journal of Forecasting, 2012, vol. 28, issue 1, 20-33
Abstract:
Histogram time series (HTS) and interval time series (ITS) are examples of symbolic data sets. Though there have been methodological developments in a cross-sectional environment, they have been scarce in a time series setting. Arroyo, González-Rivera, and Maté (2011) analyze various forecasting methods for HTS and ITS, adapting smoothing filters and nonparametric algorithms such as the k-NN. Though these methods are very flexible, they may not be the true underlying data generating process (DGP). We present the first step in the search for a DGP by focusing on the autocorrelation functions (ACFs) of HTS and ITS. We analyze the ACF of the daily histogram of 5-minute intradaily returns to the S&P500 index in 2007 and 2008. There are clusters of high/low activity that generate a strong, positive, and persistent autocorrelation, pointing towards some autoregressive process for HTS. Though smoothing and k-NN may not be the true DGPs, we find that they are very good approximations because they are able to capture almost all of the original autocorrelation. However, there seems to be some structure left in the data that will require new modelling techniques. As a byproduct, we also analyze the [90,100%] quantile interval. By using all of the information contained in the histogram, we find that there are advantages in the estimation and prediction of a specific interval.
Keywords: Symbolic data; Interval-valued data; Histogram-valued data; Autocorrelation; Intradaily returns (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207011000331
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:28:y:2012:i:1:p:20-33
DOI: 10.1016/j.ijforecast.2011.02.007
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().