EconPapers    
Economics at your fingertips  
 

Improved forecasting of autoregressive series by weighted least squares approximate REML estimation

Rohit S. Deo

International Journal of Forecasting, 2012, vol. 28, issue 1, 39-43

Abstract: Restricted maximum likelihood (REML) estimation has recently been shown to provide less biased estimates in autoregressive series. A simple weighted least squares approximate REML procedure has been developed that is particularly useful for vector autoregressive processes. Here, we compare the forecasts of such processes using both the standard ordinary least squares (OLS) estimates and the new approximate REML estimates. Forecasts based on the approximate REML estimates are found to provide a significant improvement over those obtained using the standard OLS estimates.

Keywords: Forecast error; Autoregressive; REML; OLS (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207011000409
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:28:y:2012:i:1:p:39-43

DOI: 10.1016/j.ijforecast.2011.02.014

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:28:y:2012:i:1:p:39-43