Improved forecasting of autoregressive series by weighted least squares approximate REML estimation
Rohit S. Deo
International Journal of Forecasting, 2012, vol. 28, issue 1, 39-43
Abstract:
Restricted maximum likelihood (REML) estimation has recently been shown to provide less biased estimates in autoregressive series. A simple weighted least squares approximate REML procedure has been developed that is particularly useful for vector autoregressive processes. Here, we compare the forecasts of such processes using both the standard ordinary least squares (OLS) estimates and the new approximate REML estimates. Forecasts based on the approximate REML estimates are found to provide a significant improvement over those obtained using the standard OLS estimates.
Keywords: Forecast error; Autoregressive; REML; OLS (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207011000409
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:28:y:2012:i:1:p:39-43
DOI: 10.1016/j.ijforecast.2011.02.014
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().