Forecasting US state-level employment growth: An amalgamation approach
David E. Rapach and
Jack Strauss
International Journal of Forecasting, 2012, vol. 28, issue 2, 315-327
Abstract:
We forecast US state-level employment growth using several distinct econometric approaches: combinations of individual autoregressive distributed lag models, general-to-specific modeling with bootstrap aggregation (GETS-bagging), and approximate factor (or “beta”) models. Our results show that these forecasting approaches consistently deliver sizable reductions in mean squared forecast error (MSFE) relative to an autoregressive (AR) benchmark model across the 50 US states. On the basis of forecast encompassing test results, we also consider amalgamating these approaches and find that this strategy yields additional forecasting improvements. These improvements are particularly evident during national business-cycle recessions, where the amalgamation approach outperforms the AR benchmark for nearly all states and leads to a 40% reduction in MSFE on average across states relative to the AR benchmark.
Keywords: Regional forecasting; Labor market forecasting; Autoregressive distributed lag model; General-to-specific modeling; Bootstrapping; Factor model; Encompassing; Combining forecasts; Business cycles (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207011001361
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:28:y:2012:i:2:p:315-327
DOI: 10.1016/j.ijforecast.2011.08.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().