To model, or not to model: Forecasting for customer prioritization
Chun-Yao Huang
International Journal of Forecasting, 2012, vol. 28, issue 2, 497-506
Abstract:
Simple heuristics are usually deemed to be inferior to more complicated models. Although recent studies have demonstrated the usefulness of some forecasting heuristics, the questions of why and when a heuristic would work remain unaddressed. This study aims to answer such “why” and “when” questions by looking empirically at the specific context of forecasting for customer prioritization. Based on widely-applied probabilistic models, a series of simulations reveal that: (1) we are not usually able to identify the future top-X% of customers in a customer base accurately, even if we know the exact data generation process; (2) a simple heuristic can perform as well as a probabilistic model even if the model maps the data generation process exactly; (3) the relative performances of the model and the heuristics can be explained by several easily-obtainable descriptive statistics. The heuristic works because the minimal information it relies upon is relatively robust and relevant in a random world.
Keywords: Heuristics; Probabilistic models; Forecast accuracy; Customer prioritization; Marketing (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016920701100080X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:28:y:2012:i:2:p:497-506
DOI: 10.1016/j.ijforecast.2011.04.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().