EconPapers    
Economics at your fingertips  
 

Forecasting customer behaviour in a multi-service financial organisation: A profitability perspective

Alena Audzeyeva, Barbara Summers and Klaus Schenk-Hoppé

International Journal of Forecasting, 2012, vol. 28, issue 2, 507-518

Abstract: This paper proposes a novel approach to the estimation of Customer Lifetime Value (CLV). CLV measures give an indication of the profit-generating potential of customers, and provide a key business tool for the customer management process. The performances of existing approaches are unsatisfactory in multi-service financial environments because of the high degree of heterogeneity in customer behaviour. We propose an adaptive segmentation approach which involves the identification of “neighbourhoods” using a similarity measure defined over a predictive variable space. The set of predictive variables is determined during a cross-validation procedure through the optimisation of rank correlations between the observed and predicted revenues. The future revenue is forecast for each customer using a predictive probability distribution based on customers exhibiting behavioural characteristics similar to previous periods. The model is developed and implemented for a UK retail bank, and is shown to perform well in comparison to other benchmark models.

Keywords: Profitability forecasting; Adaptive segmentation; Bootstrap; Customer lifetime value; Financial services (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207011000951
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:28:y:2012:i:2:p:507-518

DOI: 10.1016/j.ijforecast.2011.05.005

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-31
Handle: RePEc:eee:intfor:v:28:y:2012:i:2:p:507-518