EconPapers    
Economics at your fingertips  
 

Space–time autoregressive models and forecasting national, regional and state crime rates

Gary Shoesmith

International Journal of Forecasting, 2013, vol. 29, issue 1, 191-201

Abstract: The recently advanced space–time autoregressive (ST-AR) model is used to forecast US, regional and state rates of violent and property crime. The disaggregate state (Florida) violent crime model includes murder, rape, robbery, and assault, while the property crime model includes burglary, larceny, and motor vehicle theft. In experimental forecasts, ST-AR RMSEs are compared to those for aggregate univariate AR(p) models, vector autoregressions (VAR), Bayesian VARs (BVAR), and two naïve models that predict future crime rates either as the most recent rate or according to the most recent change in rates. The ST-AR model is of particular interest, given its efficient use of data, much like panel-data estimation. The ST-AR, BVAR, and AR(p) models outperform the other three approaches, but the ST-AR models are generally superior.

Keywords: Crime forecasting; Autoregressive models; Disaggregation; Regional forecasting; Time series (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207012001136
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:29:y:2013:i:1:p:191-201

DOI: 10.1016/j.ijforecast.2012.08.002

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-31
Handle: RePEc:eee:intfor:v:29:y:2013:i:1:p:191-201