On downside risk predictability through liquidity and trading activity: A dynamic quantile approach
Antonio Rubia and
Lidia Sanchis-Marco
International Journal of Forecasting, 2013, vol. 29, issue 1, 202-219
Abstract:
Most downside risk models implicitly assume that returns are a sufficient statistic with which to forecast the daily conditional distribution of a portfolio. In this paper, we analyze whether the variables that proxy for market-wide liquidity and trading conditions convey valid information for forecasting the quantiles of the conditional distribution of several representative market portfolios, including volume- and value-weighted market portfolios, and several Book-to-Market- and Size-sorted portfolios. Using dynamic quantile regression techniques, we report evidence of conditional tail predictability in terms of these variables. A comprehensive backtesting analysis shows that this link can be exploited in dynamic quantile modelling, in order to considerably improve the performances of day-ahead Value at Risk forecasts.
Keywords: Value at risk; Liquidity; Trading activity; Non-linear quantile regression; CAViaR (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016920701200115X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:29:y:2013:i:1:p:202-219
DOI: 10.1016/j.ijforecast.2012.09.001
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().