EconPapers    
Economics at your fingertips  
 

Optimally harnessing inter-day and intra-day information for daily value-at-risk prediction

Ana-Maria Fuertes and Jose Olmo

International Journal of Forecasting, 2013, vol. 29, issue 1, 28-42

Abstract: We make use of quantile regression theory to obtain a combination of individual potentially-biased VaR forecasts that is optimal because, by construction, it meets the correct out-of-sample conditional coverage criterion ex post. This enables a Wald-type conditional quantile forecast encompassing test to be used for any finite set of competing (semi/non)parametric models which can be nested. Two attractive properties of this backtesting approach are its robustness to both model risk and estimation uncertainty. We deploy the techniques to analyse inter-day and high frequency intra-day VaR models for equity, FOREX, fixed income and commodity trading desks. The forecast combination of both types of models is especially warranted for more extreme-tail risks. Overall, our empirical analysis supports the use of high frequency 5 minute price information for daily risk management.

Keywords: Quantile regression; Optimal forecast combination; Encompassing; Conditional coverage; High-frequency data; Realized variance (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207012000805
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:29:y:2013:i:1:p:28-42

DOI: 10.1016/j.ijforecast.2012.05.005

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:29:y:2013:i:1:p:28-42