EconPapers    
Economics at your fingertips  
 

Predicting short-term interest rates using Bayesian model averaging: Evidence from weekly and high frequency data

Chew Chua, Sandy Suardi and Sarantis Tsiaplias

International Journal of Forecasting, 2013, vol. 29, issue 3, 442-455

Abstract: This paper examines the forecasting performance of Bayesian model averaging (BMA) for a set of single factor models of short-term interest rates. Using weekly and high frequency data for the one-month Eurodollar rate, BMA produces predictive likelihoods that are considerably better than those associated with the majority of the short-rate models, but marginally worse than those of the best model in each dataset. We also find that BMA forecasts based on recent predictive likelihoods are preferred to those based on the marginal likelihood of the entire dataset.

Keywords: Bayesian model averaging; Short-term interest rates; Out-of-sample forecasts (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207012001331
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:29:y:2013:i:3:p:442-455

DOI: 10.1016/j.ijforecast.2012.10.003

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:intfor:v:29:y:2013:i:3:p:442-455