EconPapers    
Economics at your fingertips  
 

Forecasting with vector autoregressive models of data vintages: US output growth and inflation

Michael Clements and Ana Galvão ()

International Journal of Forecasting, 2013, vol. 29, issue 4, 698-714

Abstract: Vintage-based vector autoregressive models of a single macroeconomic variable are shown to be a useful vehicle for obtaining forecasts of different maturities of future and past observations, including estimates of post-revision values. The forecasting performance of models which include information on annual revisions is superior to that of models which only include the first two data releases. However, the empirical results indicate that a model which reflects the seasonal nature of data releases more closely does not offer much improvement over an unrestricted vintage-based model which includes three rounds of annual revisions.

Keywords: Data revisions; Forecasting; Data uncertainty (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207011001646
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:29:y:2013:i:4:p:698-714

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2019-09-12
Handle: RePEc:eee:intfor:v:29:y:2013:i:4:p:698-714