Testing time series data compatibility for benchmarking
Benoît Quennevillle and
Christian Gagné
International Journal of Forecasting, 2013, vol. 29, issue 4, 754-766
Abstract:
Compatibility testing determines whether two series, say a sub-annual and an annual series, both of which are subject to sampling errors, can be considered suitable for benchmarking. We derive statistical tests and discuss the issues with their implementation. The results are illustrated using the artificial series from Denton (1971) and two empirical examples. A practical way of implementing the tests is also presented.
Keywords: Autoregressive process; Chi-square distribution; Likelihood ratio test; Score test; Wald test (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207011001385
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:29:y:2013:i:4:p:754-766
DOI: 10.1016/j.ijforecast.2011.10.001
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().