EconPapers    
Economics at your fingertips  
 

Testing time series data compatibility for benchmarking

Benoît Quennevillle and Christian Gagné

International Journal of Forecasting, 2013, vol. 29, issue 4, 754-766

Abstract: Compatibility testing determines whether two series, say a sub-annual and an annual series, both of which are subject to sampling errors, can be considered suitable for benchmarking. We derive statistical tests and discuss the issues with their implementation. The results are illustrated using the artificial series from Denton (1971) and two empirical examples. A practical way of implementing the tests is also presented.

Keywords: Autoregressive process; Chi-square distribution; Likelihood ratio test; Score test; Wald test (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207011001385
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:29:y:2013:i:4:p:754-766

DOI: 10.1016/j.ijforecast.2011.10.001

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:29:y:2013:i:4:p:754-766