Bayesian doubly adaptive elastic-net Lasso for VAR shrinkage
Deborah Gefang
International Journal of Forecasting, 2014, vol. 30, issue 1, 1-11
Abstract:
We develop a novel Bayesian doubly adaptive elastic-net Lasso (DAELasso) approach for VAR shrinkage. DAELasso achieves variable selection and coefficient shrinkage in a data-based manner. It deals constructively with explanatory variables which tend to be highly collinear by encouraging the grouping effect. In addition, it also allows for different degrees of shrinkage for different coefficients. Rewriting the multivariate Laplace distribution as a scale mixture, we establish closed-form conditional posteriors that can be drawn from a Gibbs sampler. An empirical analysis shows that the forecast results produced by DAELasso and its variants are comparable to those from other popular Bayesian methods, which provides further evidence that the forecast performances of large and medium sized Bayesian VARs are relatively robust to prior choices, and, in practice, simple Minnesota types of priors can be more attractive than their complex and well-designed alternatives.
Keywords: Bayesian; DAELasso; VAR (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (66)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207013000770
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:30:y:2014:i:1:p:1-11
DOI: 10.1016/j.ijforecast.2013.04.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().