EconPapers    
Economics at your fingertips  
 

Frequentist model averaging for multinomial and ordered logit models

Alan T.K. Wan, Xinyu Zhang and Shouyang Wang

International Journal of Forecasting, 2014, vol. 30, issue 1, 118-128

Abstract: Multinomial and ordered Logit models are quantitative techniques which are used in a range of disciplines nowadays. When applying these techniques, practitioners usually select a single model using either information-based criteria or pretesting. In this paper, we consider the alternative strategy of combining models rather than selecting a single model. Our strategy of weight choice for the candidate models is based on the minimization of a plug-in estimator of the asymptotic squared error risk of the model average estimator. Theoretical justifications of this model averaging strategy are provided, and a Monte Carlo study shows that the forecasts produced by the proposed strategy are often more accurate than those produced by other common model selection and model averaging strategies, especially when the regressors are only mildly to moderately correlated and the true model contains few zero coefficients. An empirical example based on credit rating data is used to illustrate the proposed method. To reduce the computational burden, we also consider a model screening step that eliminates some of the very poor models before averaging.

Keywords: Asymptotic squared error risk; Local mis-specification; Model screening; Monte Carlo; Plug-in estimator (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207013000940
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:30:y:2014:i:1:p:118-128

DOI: 10.1016/j.ijforecast.2013.07.013

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:30:y:2014:i:1:p:118-128