Forecast combinations under structural break uncertainty
Jing Tian () and
Heather Anderson
International Journal of Forecasting, 2014, vol. 30, issue 1, 161-175
Abstract:
This paper proposes two new weighting schemes that average forecasts based on different estimation windows in order to account for possible structural change. The first scheme weights the forecasts according to the values of reversed ordered CUSUM (ROC) test statistics, while the second weighting method simply assigns heavier weights to forecasts that use more recent information. Simulation results show that, when structural breaks are present, forecasts based on the first weighting scheme outperform those based on a procedure that simply uses ROC tests to choose and forecast from a single post-break estimation window. Combination forecasts based on our second weighting scheme outperform equally weighted combination forecasts. An empirical application based on a NAIRU Phillips curve model for the G7 countries illustrates these findings, and also shows that combination forecasts can outperform the random walk forecasting model.
Keywords: Bias–variance trade-offs; Choice of estimation windows; Inflation forecasts; Parameter shifts; Reversed order CUSUM tests; Weighted forecasts (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207013000897
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:30:y:2014:i:1:p:161-175
DOI: 10.1016/j.ijforecast.2013.06.003
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().