EconPapers    
Economics at your fingertips  
 

Forecasting Austrian national elections: The Grand Coalition model

Julian Aichholzer () and Johanna Willmann

International Journal of Forecasting, 2014, vol. 30, issue 1, 55-64

Abstract: Forecasting the outcomes of national elections has become established practice in several democracies. In the present paper, we develop an economic voting model for forecasting the future success of the Austrian ‘grand coalition’, i.e., the joint electoral success of the two mainstream parties SPOE and OEVP, at the 2013 Austrian Parliamentary Elections. Our main argument is that the success of both parties is strongly tied to the accomplishments of the Austrian system of corporatism, that is, the Social Partnership (Sozialpartnerschaft), in providing economic prosperity. Using data from Austrian national elections between 1953 and 2008 (n=18), we rely on the following predictors in our forecasting model: (1) unemployment rates, (2) previous incumbency of the two parties, and (3) dealignment over time. We conclude that, in general, the two mainstream parties benefit considerably from low unemployment rates, and are weakened whenever they have previously formed a coalition government. Further, we show that they have gradually been losing a good share of their voter basis over recent decades.

Keywords: Austria; Election forecasting; Economic voting; Multi-party system; Social Partnership (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207013000927
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:30:y:2014:i:1:p:55-64

DOI: 10.1016/j.ijforecast.2013.07.011

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:30:y:2014:i:1:p:55-64