A feature engineering approach to wind power forecasting
Lucas Silva
International Journal of Forecasting, 2014, vol. 30, issue 2, 395-401
Abstract:
This paper provides detailed information about team Leustagos’ approach to the wind power forecasting track of GEFCom 2012. The task was to predict the hourly power generation at seven wind farms, 48 hours ahead. The problem was addressed by extracting time- and weather-related features, which were used to build gradient-boosted decision trees and linear regression models. This approach achieved first place in both the public and private leaderboards.
Keywords: GEFCom; Feature engineering; Gradient boosted decision trees; Linear regression; Machine learning; Time series (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207013000836
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:30:y:2014:i:2:p:395-401
DOI: 10.1016/j.ijforecast.2013.07.007
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().