The challenges of pre-launch forecasting of adoption time series for new durable products
Paul Goodwin,
Sheik Meeran and
Karima Dyussekeneva
International Journal of Forecasting, 2014, vol. 30, issue 4, 1082-1097
Abstract:
The successful introduction of new durable products plays an important part in helping companies to stay ahead of their competitors. Decisions relating to these products can be improved by the availability of reliable pre-launch forecasts of their adoption time series. However, producing such forecasts is a difficult, complex and challenging task, mainly because of the non-availability of past time series data relating to the product, and the multiple factors that can affect adoptions, such as customer heterogeneity, macroeconomic conditions following the product launch, and technological developments which may lead to the product’s premature obsolescence. This paper provides a critical review of the literature to examine what it can tell us about the relative effectiveness of three fundamental approaches to filling the data void : (i) management judgment, (ii) the analysis of judgments by potential customers, and (iii) formal models of the diffusion process. It then shows that the task of producing pre-launch time series forecasts of adoption levels involves a set of sub-tasks, which all involve either quantitative estimation or choice, and argues that the different natures of these tasks mean that the forecasts are unlikely to be accurate if a single method is employed. Nevertheless, formal models should be at the core of the forecasting process, rather than unstructured judgment. Gaps in the literature are identified, and the paper concludes by suggesting a research agenda so as to indicate where future research efforts might be employed most profitably.
Keywords: New product forecasting; Judgment; Diffusion models; Choice models (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207014001095
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:30:y:2014:i:4:p:1082-1097
DOI: 10.1016/j.ijforecast.2014.08.009
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().