Professional forecasters and real-time forecasting with a DSGE model
Frank Smets,
Anders Warne and
Raf Wouters
International Journal of Forecasting, 2014, vol. 30, issue 4, 981-995
Abstract:
This paper analyses the real-time forecasting performance of the New Keynesian DSGE model of Galí, Smets and Wouters (2012), estimated on euro area data. It investigates the extent to which the inclusion of forecasts of inflation, GDP growth and unemployment by professional forecasters improve the forecasting performance. We consider two approaches for conditioning on such information. Under the “noise” approach, the mean professional forecasts are assumed to be noisy indicators of the rational expectations forecasts implied by the DSGE model. Under the “news” approach, it is assumed that the forecasts reveal the presence of expected future structural shocks in line with those estimated in the past. The forecasts of the DSGE model are compared with those from a Bayesian VAR model, an AR(1) model, a sample mean and a random walk.
Keywords: Bayesian methods; Real-time data; Survey of Professional Forecasters; Macroeconomic forecasting; Euro area (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016920701400065X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:30:y:2014:i:4:p:981-995
DOI: 10.1016/j.ijforecast.2014.03.018
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().