Comparing the effectiveness of traditional vs. mechanized identification methods in post-sample forecasting for a macroeconomic Granger causality analysis
Haichun Ye,
Richard Ashley () and
John Guerard
International Journal of Forecasting, 2015, vol. 31, issue 2, 488-500
Abstract:
We identify forecasting models using both a traditional, partially judgmental method and the mechanized Autometrics method. We then compare the effectiveness of these two different identification methods for post-sample forecasting, in the context of a relatively large-scale exemplar of macroeconomic post-sample Granger causality testing. This example examines the Granger causal relationships among four macroeconomically important endogenous variables–monthly measures of aggregate income, consumption, consumer prices, and the unemployment rate–embedded in a six-dimensional information set which also includes two interest rates, both of which are taken to be weakly exogenous in this context. We find that models indentified by the traditional method tend to have better post-sample forecasting abilities than analogous models identified using the mechanized method, and that the analysis done using the traditional identification method generates stronger evidence for post-sample Granger causality among the four endogenous variables.
Keywords: Post-sample forecasting; Post-sample Granger causality; Identification methods (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207014001046
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:31:y:2015:i:2:p:488-500
DOI: 10.1016/j.ijforecast.2014.08.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().