Quantifying differential interpretation of public information using financial analysts’ earnings forecasts
Xuguang Simon Sheng and
Maya Thevenot
International Journal of Forecasting, 2015, vol. 31, issue 2, 515-530
Abstract:
Based on a standard Bayesian learning model, we propose a new measure of differential interpretation of public information, which is applicable to firms with analyst following. We validate our measure in the context of earnings announcements and provide evidence of its greater applicability, relative to a number of previously used proxies, such as the change in dispersion, Kandel and Pearson’s (1995) metric, abnormal volume and the bid–ask spread. We find that the new measure of differential interpretation is related positively to other commonly used proxies, namely trading volume, disclosure informativeness, and the cost of capital, and is related negatively to disclosure readability and management guidance precision. This more precise measure of opinion divergence will enable researchers to pursue studies that were previously difficult to conduct.
Keywords: Differential interpretations; Disclosure; Public information; Trading volume (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207014001149
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:31:y:2015:i:2:p:515-530
DOI: 10.1016/j.ijforecast.2014.08.012
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().