Earnings forecasting in a global stock selection model and efficient portfolio construction and management
John B. Guerard,
Harry Markowitz and
GanLin Xu
International Journal of Forecasting, 2015, vol. 31, issue 2, 550-560
Abstract:
Stock selection models often use analysts’ expectations, momentum, and fundamental data. We find support for composite modeling using these sources of data for global stocks during the period 1997–2011. We also find evidence to support the use of SunGard APT and Axioma multi-factor models for portfolio construction and risk control. Three levels of testing for stock selection and portfolio construction models are developed and estimated. We create portfolios for January 1997–December 2011. We report three conclusions: (1) analysts’ forecast information was rewarded by the global market between January 1997 and December 2011; (2) analysts’ forecasts can be combined with reported fundamental data, such as earnings, book value, cash flow and sales, and also with momentum, in a stock selection model for identifying mispriced securities; and (3) the portfolio returns of the multi-factor risk-controlled portfolios allow us to reject the null hypothesis for the data mining corrections test. The earnings forecasting variable dominates our composite model in terms of its impact on stock selection.
Keywords: Earnings Forecasting; I/B/E/S; Portfolio optimization; Information ratio; Efficient frontier; Active returns (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207014001447
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:31:y:2015:i:2:p:550-560
DOI: 10.1016/j.ijforecast.2014.10.003
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().