Forecasting zero-inflated price changes with a Markov switching mixture model for autoregressive and heteroscedastic time series
Holger Kömm and
Ulrich Küsters
International Journal of Forecasting, 2015, vol. 31, issue 3, 598-608
Abstract:
The weekly changes in prices of several German milk-based commodities exhibit not only traditional patterns such as mean dependence and volatility clustering, but also a high frequency of zero changes that cannot be explained by well-known ARIMA-GARCH models. We therefore develop a new mixture model which combines the elements of zero-inflated models that are common in microeconometrics and intermittent demand forecasting with a traditional ARIMA(1,1,0)-GARCH(1,1) model. We describe the model components, the data generation processes, the maximum likelihood estimation techniques, and the generation of forecasting distributions and point forecasts by resampling techniques. The model is applied to a low frequency weekly time series of skimmed whey powder (SWP). Competing submodels are compared using the Akaike information criterion (AIC). Furthermore, in addition to the evaluation of the out-of-sample forecasting performance, several coverage and independence tests are also computed.
Keywords: Agriculture; ARIMA models; GARCH models; Mixture models; Price forecasting; Time series; Volatility forecasting; Zero-inflated models (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207015000047
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:31:y:2015:i:3:p:598-608
DOI: 10.1016/j.ijforecast.2014.10.008
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().