Macroeconomic forecasting and structural analysis through regularized reduced-rank regression
Emmanuela Bernardini and
Gianluca Cubadda
International Journal of Forecasting, 2015, vol. 31, issue 3, 682-691
Abstract:
This paper proposes a strategy for detecting and imposing reduced-rank restrictions in medium vector autoregressive models. It is known that Canonical Correlation Analysis (CCA) does not perform well in this framework, because inversions of large covariance matrices are required. We propose a method that combines the richness of reduced-rank regression with the simplicity of naïve univariate forecasting methods. In particular, we suggest the usage of a proper shrinkage estimator of the autocovariance matrices that are involved in the computation of CCA, in order to obtain a method that is asymptotically equivalent to CCA, but numerically more stable in finite samples. Simulations and empirical applications document the merits of the proposed approach for both forecasting and structural analysis.
Keywords: Canonical correlation analysis; Vector autoregressive models; Shrinkage estimation; Macroeconomic prediction (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207013001647
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Macroeconomic forecasting and structural analysis through regularized reduced-rank regression (2013) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:31:y:2015:i:3:p:682-691
DOI: 10.1016/j.ijforecast.2013.10.005
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().