A note on the Mean Absolute Scaled Error
Philip Hans Franses
International Journal of Forecasting, 2016, vol. 32, issue 1, 20-22
Abstract:
Hyndman and Koehler (2006) recommend that the Mean Absolute Scaled Error (MASE) should become the standard when comparing forecast accuracies. This note supports their claim by showing that the MASE fits nicely within the standard statistical procedures initiated by Diebold and Mariano (1995) for testing equal forecast accuracies. Various other criteria do not fit, as they do not imply the relevant moment properties, and this is illustrated in some simulation experiments.
Keywords: Forecast accuracy; Forecast error measures; Statistical testing (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207015000448
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:32:y:2016:i:1:p:20-22
DOI: 10.1016/j.ijforecast.2015.03.008
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().