Identification and real-time forecasting of Norwegian business cycles
Knut Are Aastveit,
Anne Sofie Jore and
Francesco Ravazzolo
International Journal of Forecasting, 2016, vol. 32, issue 2, 283-292
Abstract:
We define and forecast classical business cycle turning points for the Norwegian economy. When defining reference business cycles, we compare a univariate and a multivariate Bry–Boschan approach with univariate Markov-switching models and Markov-switching factor models. On the basis of a receiver operating characteristic curve methodology and a comparison of the business cycle turning points of Norway’s main trading partners, we find that a Markov-switching factor model provides the most reasonable definition of Norwegian business cycles for the sample 1978Q1–2011Q4. In a real-time out-of-sample forecasting exercise, focusing on the last recession, we show that univariate Markov-switching models applied to surveys and a financial conditions index are timely and accurate in calling the last peak in real time. However, the models are less accurate and timely in calling the trough in real time.
Keywords: Business cycle; Dating rules; Turning points; Real-time data (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207015001089
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Identification and real-time forecasting of Norwegian business cycles (2015) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:32:y:2016:i:2:p:283-292
DOI: 10.1016/j.ijforecast.2015.06.006
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().