Forecasting branded and generic pharmaceuticals
Konstantinos Nikolopoulos (),
Samantha Buxton,
Marwan Khammash and
Philip Stern
International Journal of Forecasting, 2016, vol. 32, issue 2, 344-357
Abstract:
We forecast UK pharmaceutical time series before and after the time of patent expiry. This is a critical point in the lifecycle, as a generic form of the product is then introduced into the market, while the branded form is still available for prescription. Forecasting the numbers of units of branded and generic forms of pharmaceuticals dispensed is becoming increasingly important, due to their huge market value and the limited number of new ‘blockbuster’ branded drugs, as well as the imposed cost for national healthcare systems like the NHS. In this paper, eleven methods are used to forecast drug time series, including diffusion models (Bass model & RPDM), ARIMA, exponential smoothing (Simple and Holt), naïve and regression methods. ARIMA and Holt produce accurate short term (annual) forecasts for branded and generic drugs respectively, while for the more strategic horizons of 2–5 years ahead, naïve with drift provides the most accurate forecasts.
Keywords: Pharmaceuticals forecasting; Diffusion models; New products; Branded; Generics (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207015001181
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:32:y:2016:i:2:p:344-357
DOI: 10.1016/j.ijforecast.2015.08.001
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().