The relationship between model complexity and forecasting performance for computer intelligence optimization in finance
Adam Ghandar,
Zbigniew Michalewicz and
Ralf Zurbruegg
International Journal of Forecasting, 2016, vol. 32, issue 3, 598-613
Abstract:
The objective of this paper is to show that the ability of nature-inspired optimization routines to construct complex models does not necessarily imply any improvement in performance. In fact, the reverse may be the case. We demonstrate that under the dynamic conditions found in most financial markets, complex prediction models that seem, ex-ante, to be at least as good as more simple models, can underperform in out-of-sample tests. The correct application of these optimization methods requires a knowledge of how and when these techniques will yield beneficial outcomes. We highlight the need for future research to focus on appropriate protocols and a systematic approach to model selection when computer intelligence optimization methods are being utilized, particularly within the realm of financial forecasting.
Keywords: Financial forecasting; Computer intelligence optimization; Evolutionary algoritms (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207016000054
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:32:y:2016:i:3:p:598-613
DOI: 10.1016/j.ijforecast.2015.10.003
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().