Evaluating predictive count data distributions in retail sales forecasting
Stephan Kolassa
International Journal of Forecasting, 2016, vol. 32, issue 3, 788-803
Abstract:
Massive increases in computing power and new database architectures allow data to be stored and processed at finer and finer granularities, yielding count data time series with lower and lower counts. These series can no longer be dealt with using the approximative methods that are appropriate for continuous probability distributions. In addition, it is not sufficient to calculate point forecasts alone: we need to forecast entire (discrete) predictive distributions, particularly for supply chain forecasting and inventory control, but also for other planning processes. However, tools that are suitable for evaluating the quality of discrete predictive distributions are not commonly used in sales forecasting. We explore classical point forecast accuracy measures, explain why measures such as MAD, MASE and wMAPE are inherently unsuitable for count data, and use the randomized Probability Integral Transform (PIT) and proper scoring rules to compare the performances of multiple causal and noncausal forecasting models on two datasets of daily retail sales.
Keywords: Demand forecasting; Density forecasting; Error measures; Intermittent demand; Proper scoring rules (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (45)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207016000315
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:32:y:2016:i:3:p:788-803
DOI: 10.1016/j.ijforecast.2015.12.004
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().