A prediction interval for a function-valued forecast model: Application to load forecasting
Anestis Antoniadis,
Xavier Brossat,
Jairo Cugliari and
Jean-Michel Poggi
International Journal of Forecasting, 2016, vol. 32, issue 3, 939-947
Abstract:
Starting from the information contained in the shape of the load curves, we propose a flexible nonparametric function-valued forecast model called KWF (Kernel + Wavelet + Functional) that is well suited to the handling of nonstationary series. The predictor can be seen as a weighted average of the futures of past situations, where the weights increase with the similarity between the past situations and the actual one. In addition, this strategy also provides simultaneous predictions at multiple horizons. These weights induce a probability distribution that can be used to produce bootstrap pseudo predictions. Prediction intervals are then constructed after obtaining the corresponding bootstrap pseudo prediction residuals. We develop two propositions following the KWF strategy directly, and compare it to two alternative methods that arise from proposals by econometricians. The latter involve the construction of simultaneous prediction intervals using multiple comparison corrections through the control of the family-wise error (FWE) or the false discovery rate. Alternatively, such prediction intervals can be constructed by bootstrapping joint probability regions. In this work, we propose to obtain prediction intervals for the KWF model that are valid simultaneously for the H prediction horizons that correspond to the relevant path forecasts, making a connection between functional time series and the econometricians’ framework.
Keywords: Load forecasting; Functional data; Nonparametric estimation; Prediction interval (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207015001107
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:32:y:2016:i:3:p:939-947
DOI: 10.1016/j.ijforecast.2015.09.001
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().