A comparison of AdaBoost algorithms for time series forecast combination
Devon K. Barrow and
Sven F. Crone
International Journal of Forecasting, 2016, vol. 32, issue 4, 1103-1119
Abstract:
Recently, combination algorithms from machine learning classification have been extended to time series regression, most notably seven variants of the popular AdaBoost algorithm. Despite their theoretical promise their empirical accuracy in forecasting has not yet been assessed, either against each other or against any established approaches of forecast combination, model selection, or statistical benchmark algorithms. Also, none of the algorithms have been assessed on a representative set of empirical data, using only few synthetic time series. We remedy this omission by conducting a rigorous empirical evaluation using a representative set of 111 industry time series and a valid and reliable experimental design. We develop a full-factorial design over derived Boosting meta-parameters, creating 42 novel Boosting variants, and create a further 47 novel Boosting variants using research insights from forecast combination. Experiments show that only few Boosting meta-parameters increase accuracy, while meta-parameters derived from forecast combination research outperform others.
Keywords: Forecasting; Time series; Boosting; Ensemble; Model combination; Neural networks (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207016300255
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:32:y:2016:i:4:p:1103-1119
DOI: 10.1016/j.ijforecast.2016.01.006
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().