Models for optimising the theta method and their relationship to state space models
Jose A. Fiorucci,
Tiago R. Pellegrini,
Francisco Louzada,
Fotios Petropoulos and
Anne B. Koehler
International Journal of Forecasting, 2016, vol. 32, issue 4, 1151-1161
Abstract:
Accurate and robust forecasting methods for univariate time series are very important when the objective is to produce estimates for large numbers of time series. In this context, the Theta method’s performance in the M3-Competition caught researchers’ attention. The Theta method, as implemented in the monthly subset of the M3-Competition, decomposes the seasonally adjusted data into two “theta lines”. The first theta line removes the curvature of the data in order to estimate the long-term trend component. The second theta line doubles the local curvatures of the series so as to approximate the short-term behaviour. We provide generalisations of the Theta method. The proposed Dynamic Optimised Theta Model is a state space model that selects the best short-term theta line optimally and revises the long-term theta line dynamically. The superior performance of this model is demonstrated through an empirical application. We relate special cases of this model to state space models for simple exponential smoothing with a drift.
Keywords: Time series forecasting; Theta method; State Space Models; M3-Competition; Combination (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207016300243
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:32:y:2016:i:4:p:1151-1161
DOI: 10.1016/j.ijforecast.2016.02.005
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().