EconPapers    
Economics at your fingertips  
 

Models for optimising the theta method and their relationship to state space models

Jose A. Fiorucci, Tiago R. Pellegrini, Francisco Louzada, Fotios Petropoulos and Anne B. Koehler

International Journal of Forecasting, 2016, vol. 32, issue 4, 1151-1161

Abstract: Accurate and robust forecasting methods for univariate time series are very important when the objective is to produce estimates for large numbers of time series. In this context, the Theta method’s performance in the M3-Competition caught researchers’ attention. The Theta method, as implemented in the monthly subset of the M3-Competition, decomposes the seasonally adjusted data into two “theta lines”. The first theta line removes the curvature of the data in order to estimate the long-term trend component. The second theta line doubles the local curvatures of the series so as to approximate the short-term behaviour. We provide generalisations of the Theta method. The proposed Dynamic Optimised Theta Model is a state space model that selects the best short-term theta line optimally and revises the long-term theta line dynamically. The superior performance of this model is demonstrated through an empirical application. We relate special cases of this model to state space models for simple exponential smoothing with a drift.

Keywords: Time series forecasting; Theta method; State Space Models; M3-Competition; Combination (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207016300243
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:32:y:2016:i:4:p:1151-1161

DOI: 10.1016/j.ijforecast.2016.02.005

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:32:y:2016:i:4:p:1151-1161