Forecasting using sparse cointegration
Ines Wilms and
Christophe Croux
International Journal of Forecasting, 2016, vol. 32, issue 4, 1256-1267
Abstract:
This paper proposes a sparse cointegration method. Cointegration analysis is used to estimate the long-run equilibrium relationships between several time series, with the coefficients of these long-run equilibrium relationships being the cointegrating vectors. We provide a sparse estimator of the cointegrating vectors, where sparse estimation means that some elements of the cointegrating vectors are estimated to be exactly zero. The sparse estimator is applicable in high-dimensional settings, where the time series is short compared to the number of time series. Our method achieves better estimation and forecast accuracy than the traditional Johansen method in sparse and/or high-dimensional settings. We use the sparse method for interest rate growth forecasting and consumption growth forecasting. The sparse cointegration method leads to important forecast accuracy gains relative to the Johansen method.
Keywords: Lasso; Reduced rank regression; Sparse estimation; Time series forecasting; Vector error correction model (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207016300589
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:32:y:2016:i:4:p:1256-1267
DOI: 10.1016/j.ijforecast.2016.04.005
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().