EconPapers    
Economics at your fingertips  
 

Quantile regression forecasts of inflation under model uncertainty

Dimitris Korobilis

International Journal of Forecasting, 2017, vol. 33, issue 1, 11-20

Abstract: This paper examines the performance of Bayesian model averaging (BMA) methods in a quantile regression model for inflation. Different predictors are allowed to affect different quantiles of the dependent variable. Based on real-time quarterly data for the US, we show that quantile regression BMA (QR-BMA) predictive densities are superior to and better calibrated than those from BMA in the traditional regression model. In addition, QR-BMA methods also compare favorably to popular nonlinear specifications for US inflation.

Keywords: Bayesian model averaging; Quantile regression; Inflation forecasts; Fan charts (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207016300759
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:33:y:2017:i:1:p:11-20

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

 
Page updated 2019-12-08
Handle: RePEc:eee:intfor:v:33:y:2017:i:1:p:11-20