Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity
Fengping Tian,
Ke Yang and
Langnan Chen
International Journal of Forecasting, 2017, vol. 33, issue 1, 132-152
Abstract:
We develop a time-varying HAR model where both the predictors and the regression coefficients are allowed to change over time, and use it to forecast the realized volatility in the fast-growing agricultural commodity futures markets of China. The proposed model is constructed by incorporating all potential predictors in a time-varying HAR framework, and giving the independent normal-gamma autoregressive (NGAR) process priors to the regression coefficients. The out-of-sample forecast results show that the proposed HAR model with time-varying sparsity improves the forecast performances substantially relative to both the simple HAR model and more sophisticated HAR-type models in almost all cases. Finally, the forecast performance of the proposed model is robust to the alternative proxies of volatility.
Keywords: Realized volatility; Forecast; HAR model; Time-varying sparsity; Agricultural commodity futures (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (48)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207016300887
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:33:y:2017:i:1:p:132-152
DOI: 10.1016/j.ijforecast.2016.08.002
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().