Forecasting loss given default of bank loans with multi-stage model
Yuta Tanoue,
Akihiro Kawada and
Satoshi Yamashita
International Journal of Forecasting, 2017, vol. 33, issue 2, 513-522
Abstract:
Probability of default (PD) and loss given default (LGD) are key risk parameters in credit risk management. The majority of LGD research is based on the corporate bond market and few studies focus on the LGD of bank loans even in Japan because of the lack of available public data on bank loan losses. Consequently, knowledge concerning Japanese bank loan LGD is scarce. This study uses Japanese bank loan data to analyze the influencing factors of LGD and to develop a (multi-stage) model to predict LGD and expected loss (EL). We found that collateral, guarantees, and loan size impact LGD. Further, we confirmed that our multi-stage LGD model has superior predictive accuracy than the corresponding OLS model, Tobit model and Inflated beta regression model.
Keywords: Credit risk modeling; Loss given default; Multi-stage model; Probability of default; Expected loss (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207016301303
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:33:y:2017:i:2:p:513-522
DOI: 10.1016/j.ijforecast.2016.11.005
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().