EconPapers    
Economics at your fingertips  
 

VARX-L: Structured regularization for large vector autoregressions with exogenous variables

William B. Nicholson, David S. Matteson and Jacob Bien

International Journal of Forecasting, 2017, vol. 33, issue 3, 627-651

Abstract: The vector autoregression (VAR) has long proven to be an effective method for modeling the joint dynamics of macroeconomic time series, as well as for forecasting. One major shortcoming of the VAR that has limited its applicability is its heavy parameterization: the parameter space grows quadratically with the number of series included, quickly exhausting the available degrees of freedom. Consequently, using VARs for forecasting is intractable for low-frequency, high-dimensional macroeconomic data. However, empirical evidence suggests that VARs that incorporate more component series tend to result in more accurate forecasts. Most conventional methods that allow for the estimation of large VARs either require ad hoc subjective specifications or are computationally infeasible. Moreover, as global economies become more intricately intertwined, there has been a substantial interest in incorporating the impact of stochastic, unmodeled exogenous variables. Vector autoregression with exogenous variables (VARX) extends the VAR to allow for the inclusion of unmodeled variables, but faces similar dimensionality challenges.

Keywords: Big data; Forecasting; Group lasso; Macroeconometrics; Time series (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (62)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207017300080
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:33:y:2017:i:3:p:627-651

DOI: 10.1016/j.ijforecast.2017.01.003

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:33:y:2017:i:3:p:627-651