EconPapers    
Economics at your fingertips  
 

Volatility measures and Value-at-Risk

Dennis Bams, Gildas Blanchard and Thorsten Lehnert

International Journal of Forecasting, 2017, vol. 33, issue 4, 848-863

Abstract: We evaluate and compare the abilities of the implied volatility and historical volatility models to provide accurate Value-at-Risk forecasts. Our empirical tests on the S&P 500, Dow Jones Industrial Average and Nasdaq 100 indices over long time series of more than 20 years of daily data indicate that an implied volatility based Value-at-Risk cannot beat, and tends to be outperformed by, a simple GJR-GARCH based Value-at-Risk. This finding is robust to the use of the likelihood ratio, the dynamic quantile test or a statistical loss function for evaluating the Value-at-Risk performance.

Keywords: Value-at-Risk; Option implied volatility; Volatility risk premium; Time-series; GARCH models (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207017300511
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:33:y:2017:i:4:p:848-863

DOI: 10.1016/j.ijforecast.2017.04.004

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:33:y:2017:i:4:p:848-863