EconPapers    
Economics at your fingertips  
 

Deciding between alternative approaches in macroeconomics

David Hendry

International Journal of Forecasting, 2018, vol. 34, issue 1, 119-135

Abstract: Macroeconomic time-series data are aggregated, inaccurate, non-stationary, collinear and rarely match theoretical concepts. Macroeconomic theories are incomplete, incorrect and changeable: location shifts invalidate the law of iterated expectations and ‘rational expectations’ are then systematically biased. Empirical macro-econometric models are non-constant and mis-specified in numerous ways, so economic policy often has unexpected effects, and macroeconomic forecasts go awry. In place of using just one of the four main methods of deciding between alternative models, theory, empirical evidence, policy relevance and forecasting, we propose nesting ‘theory-driven’ and ‘data-driven’ approaches, where theory-models’ parameter estimates are unaffected by selection despite searching over rival candidate variables, longer lags, functional forms, and breaks. Thus, theory is retained, but not imposed, so can be simultaneously evaluated against a wide range of alternatives, and a better model discovered when the theory is incomplete.

Keywords: Model selection; Theory retention; Location shifts; Indicator saturation; Autometrics (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207017300997
Full text for ScienceDirect subscribers only

Related works:
Working Paper: Deciding Between Alternative Approaches In Macroeconomics (2016) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:34:y:2018:i:1:p:119-135

DOI: 10.1016/j.ijforecast.2017.09.003

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:intfor:v:34:y:2018:i:1:p:119-135