Economics at your fingertips  

MGARCH models: Trade-off between feasibility and flexibility

Daniel de Almeida, Luiz Hotta and Esther Ruiz

International Journal of Forecasting, 2018, vol. 34, issue 1, 45-63

Abstract: Multivariate GARCH (MGARCH) models need to be restricted so that their estimation is feasible in large systems and so that the covariance stationarity and positive definiteness of conditional covariance matrices are guaranteed. This paper analyzes the limitations of some of the popular restricted parametric MGARCH models that are often used to represent the dynamics observed in real systems of financial returns. These limitations are illustrated using simulated data generated by general VECH models of different dimensions in which volatilities and correlations are interrelated. We show that the restrictions imposed by the BEKK model are very unrealistic, generating potentially misleading forecasts of conditional correlations. On the other hand, models based on the DCC specification provide appropriate forecasts. Alternative estimators of the parameters are important in order to simplify the computations, and do not have implications for the estimates of conditional correlations. The implications of the restrictions imposed by the different specifications of MGARCH models considered are illustrated by forecasting the volatilities and correlations of a five-dimensional system of exchange rate returns.

Keywords: BEKK; CCC; DCC; GARCH models; Multivariate time series; Variance targeting; Volatility forecasting; VECH (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
Working Paper: MGARCH models: tradeoff between feasibility and flexibility (2015) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2019-09-18
Handle: RePEc:eee:intfor:v:34:y:2018:i:1:p:45-63