EconPapers    
Economics at your fingertips  
 

Forecasting realized variance measures using time-varying coefficient models

Jeremias Bekierman and Hans Manner

International Journal of Forecasting, 2018, vol. 34, issue 2, 276-287

Abstract: This paper considers the problem of forecasting realized variance measures. These measures are highly persistent estimates of the underlying integrated variance, but are also noisy. Bollerslev, Patton and Quaedvlieg (2016), Journal of Econometrics 192(1), 1–18 exploited this so as to extend the commonly used heterogeneous autoregressive (HAR) by letting the model parameters vary over time depending on the estimated measurement error variances. We propose an alternative specification that allows the autoregressive parameters of HAR models to be driven by a latent Gaussian autoregressive process that may also depend on the estimated measurement error variance. The model parameters are estimated by maximum likelihood using the Kalman filter. Our empirical analysis considers the realized variances of 40 stocks from the S&P 500. Our model based on log variances shows the best overall performance and generates superior forecasts both in terms of a range of different loss functions and for various subsamples of the forecasting period.

Keywords: Volatility forecasting; Realized volatility; Measurement error; State space model (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207018300050
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:34:y:2018:i:2:p:276-287

DOI: 10.1016/j.ijforecast.2017.12.005

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-27
Handle: RePEc:eee:intfor:v:34:y:2018:i:2:p:276-287