EconPapers    
Economics at your fingertips  
 

Data-based mechanistic modelling and forecasting globally averaged surface temperature

Peter C. Young

International Journal of Forecasting, 2018, vol. 34, issue 2, 314-335

Abstract: The main objective of this paper it to model the dynamic relationship between global averaged measures of Total Radiative Forcing (RTF) and surface temperature, measured by the Global Temperature Anomaly (GTA), and then use this model to forecast the GTA. The analysis utilizes the Data-Based Mechanistic (DBM) approach to the modelling and forecasting where, in this application, the unobserved component model includes a novel hybrid Box-Jenkins stochastic model in which the relationship between RTF and GTA is based on a continuous time transfer function (differential equation) model. This model then provides the basis for short term, inter-annual to decadal, forecasting of the GTA, using a transfer function form of the Kalman Filter, which produces a good prediction of the ‘pause’ or ‘levelling’ in the temperature rise over the period 2000 to 2011. This derives in part from the effects of a quasi-periodic component that is modelled and forecast by a Dynamic Harmonic Regression (DHR) relationship and is shown to be correlated with the Atlantic Multidecadal Oscillation (AMO) index.

Keywords: Global Temperature Anomaly; Data-Based mechanistic modelling; Differential equation model; Quasi-cyclic variations; Adaptive forecasting (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207017301164
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:34:y:2018:i:2:p:314-335

DOI: 10.1016/j.ijforecast.2017.10.002

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:intfor:v:34:y:2018:i:2:p:314-335