A dynamic multiple equation approach for forecasting PM2.5 pollution in Santiago, Chile
Stella Moisan,
Rodrigo Herrera and
Adam Clements
International Journal of Forecasting, 2018, vol. 34, issue 4, 566-581
Abstract:
This paper proposes a methodology based on a system of dynamic multiple linear equations that incorporates hourly, daily and annual seasonal characteristics for predicting hourly pm2.5 pollution concentrations for 11 meteorological stations in Santiago, Chile. It is demonstrated that the proposed model has the potential to match or even surpass the accuracy of competing nonlinear forecasting models in terms of both fit and predictive ability. In addition, the model is successful at predicting various categories of high concentration events, between 53% and 76% of mid-range events, and around 90% of extreme-range events on average across all stations. This forecasting model is considered a useful tool for helping government authorities to anticipate critical episodes of poor air quality so as to avoid the detrimental economic and health impacts of extreme pollution levels.
Keywords: Air quality; Particulate matter; Dynamic multiple equations (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207018300529
Full text for ScienceDirect subscribers only
Related works:
Working Paper: A Dynamic Multiple Equation Approach for Forecasting PM2.5 Pollution in Santiago, Chile (2017) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:34:y:2018:i:4:p:566-581
DOI: 10.1016/j.ijforecast.2018.03.007
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().