Structured low-rank matrix completion for forecasting in time series analysis
Jonathan Gillard and
Konstantin Usevich
International Journal of Forecasting, 2018, vol. 34, issue 4, 582-597
Abstract:
This paper considers the low-rank matrix completion problem, with a specific application to forecasting in time series analysis. Briefly, the low-rank matrix completion problem is the problem of imputing missing values of a matrix under a rank constraint. We consider a matrix completion problem for Hankel matrices and a convex relaxation based on the nuclear norm. Based on new theoretical results and a number of numerical and real examples, we investigate the cases in which the proposed approach can work. Our results highlight the importance of choosing a proper weighting scheme for the known observations.
Keywords: Hankel matrices; Low-rank matrix completion; Forecasting; Nuclear norm (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207018300530
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:34:y:2018:i:4:p:582-597
DOI: 10.1016/j.ijforecast.2018.03.008
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().