Economics at your fingertips  

Crude oil price forecasting based on internet concern using an extreme learning machine

Jue Wang, George Athanasopoulos, Rob Hyndman () and Shouyang Wang

International Journal of Forecasting, 2018, vol. 34, issue 4, 665-677

Abstract: The growing internet concern (IC) over the crude oil market and related events influences market trading, thus creating further instability within the oil market itself. We propose a modeling framework for analyzing the effects of IC on the oil market and for predicting the price volatility of crude oil’s futures market. This novel approach decomposes the original time series into intrinsic modes at different time scales using bivariate empirical mode decomposition (BEMD). The relationship between the oil price volatility and IC at an individual frequency is investigated. By utilizing decomposed intrinsic modes as specified characteristics, we also construct extreme learning machine (ELM) models with variant forecasting schemes. The experimental results illustrate that ELM models that incorporate intrinsic modes and IC outperform the baseline ELM and other benchmarks at distinct horizons. Having the power to improve the accuracy of baseline models, internet searching is a practical way of quantifying investor attention, which can help to predict short-run price fluctuations in the oil market.

Keywords: Crude oil futures price; Internet concern; BEMD; ELM (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2019-10-09
Handle: RePEc:eee:intfor:v:34:y:2018:i:4:p:665-677