Ensemble forecast of photovoltaic power with online CRPS learning
J. Thorey,
C. Chaussin and
V. Mallet
International Journal of Forecasting, 2018, vol. 34, issue 4, 762-773
Abstract:
We provide probabilistic forecasts of photovoltaic (PV) production, for several PV plants located in France up to 6 days of lead time, with a 30-min timestep. First, we derive multiple forecasts from numerical weather predictions (ECMWF and Météo France), including ensemble forecasts. Second, our parameter-free online learning technique generates a weighted combination of the production forecasts for each PV plant. The weights are computed sequentially before each forecast using only past information. Our strategy is to minimize the Continuous Ranked Probability Score (CRPS). We show that our technique provides forecast improvements for both deterministic and probabilistic evaluation tools.
Keywords: Photovoltaic power; Ensemble forecasting; Probabilistic forecasting; Sequential aggregation; Machine learning (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016920701830089X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:34:y:2018:i:4:p:762-773
DOI: 10.1016/j.ijforecast.2018.05.007
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().