Crowdsourcing the vote: New horizons in citizen forecasting
Mickael Temporão,
Yannick Dufresne,
Justin Savoie and
Clifton van der Linden
International Journal of Forecasting, 2019, vol. 35, issue 1, 1-10
Abstract:
People do not know much about politics. This is one of the most robust findings in political science and is backed by decades of research. Most of this research has focused on people’s ability to know about political issues and party positions on these issues. But can people predict elections? Our research uses a very large dataset (n>2,000,000) collected during ten provincial and federal elections in Canada to test whether people can predict the electoral victor and the closeness of the race in their district throughout the campaign. The results show that they can. This paper also contributes to the emerging literature on citizen forecasting by developing a scaling method that allows us to compare the closeness of races and that can be applied to multiparty contexts with varying numbers of parties. Finally, we assess the accuracy of citizen forecasting in Canada when compared to voter expectations weighted by past votes and political competency.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207018301274
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:1:p:1-10
DOI: 10.1016/j.ijforecast.2018.07.011
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().